Week 4
MATH 4A
TA: Jerry Luo
jerryluo8@math.ucsb.edu
Website: math.ucsb.edu/~jerryluo8
Office Hours: Monday 9:30-10:30AM, South Hall 6431X
Math Lab hours: Monday 3-5PM, South Hall 1607
4-2.3 Let $e_{1}=(1,0), e_{2}=(0,1), x_{1}=(4,5)$, and $x_{2}=(-7,5)$. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation that sends $e_{1} \mapsto x_{2}$ and $e_{2} \mapsto x_{2}$. What is $T(-8,3)$?

4-2.5 Let $v_{1}=\left[\begin{array}{l}-1 \\ -2\end{array}\right]$ and $v_{2}=\left[\begin{array}{l}1 \\ 3\end{array}\right]$. Suppose $T\left(v_{1}\right)=\left[\begin{array}{c}-12 \\ 8\end{array}\right]$ and $T\left(v_{2}\right)=\left[\begin{array}{c}19 \\ -9\end{array}\right]$. For an arbitrary vector $v=\left[\begin{array}{l}x \\ y\end{array}\right]$, find $T(v)$.

4-2.7 Given $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that $T\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)=\left[\begin{array}{l}-1 \\ -1\end{array}\right]$ and $T\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)=\left[\begin{array}{c}1 \\ -3\end{array}\right]$. Find the matrix A of (ie. that represents) T.

1. Let $T: \mathbb{R}^{r} \rightarrow \mathbb{R}^{s}$. Determine whether or not T is onto in each of the following situations:
(a) $r=s$
(b) $r<s$
(c) $r>s$
